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1 Introduction

The anti-de Sitter/conformal field theory correspondence (AdS/CFT) [1] provides an el-

egant way to study strongly coupled quantum field theories by relating them to certain

classical gravity theories. This holographic method is also quite useful in describing con-

densed matter systems, for some nice reviews, see [2–5] and references therein. However,

some condensed matter systems realized in laboratories at their critical points are de-

scribed by non-relativistic conformal field theories (NRCFT). Thus it would be very useful

to study the non-relativistic version of AdS/CFT to gain more knowledge of the strong

coupling behavior of such condensed matter systems.

Non-relativistic conformal symmetry contains the scaling symmetry

t → λzt, x → λx, (1.1)

where z is the so-called dynamical exponent. For z = 1 this scaling symmetry comes back

to the familiar relativistic scale invariance. Such a non-relativistic scale invariance (1.1) can

be exhibited by either a Galilean-invariant theory or a Lifshitz-invariant theory. In [6, 7],

the gravity dual for the Schrödinger type field theory was proposed, while in [8], the gravity

dual for the Lifshitz type field theory was proposed.

The thermal version of gauge/gravty dual is very useful in realistic applications, so

it is very interesting to heat up the previous Schrödinger vacuum and Lifshitz vacuum

solutions proposed in [6–8]. It is easy to heat up the Schrödinger vacuum and embed the

thermal solutions into string theory [9–11], while, however, it is very difficult to find black

hole solutions which are dual to the thermal Lifshitz field theory [12–14]. Some interesting

attempts have been made in [15, 16]. Other interesting discussions on the gravity dual for

Lifshitz field theory could be found in [17–25].

Recently, in [26] an interesting analytic black hole solution which asymptotes to the

Lifshitz vacuum solution was found in the framework of the three dimensional New Massive
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Gravity (NMG) [27] at a specific value of coupling. In NMG, a special higher derivative

gravitational term was added to the usual action of general relativity and many interesting

things may happen at certain specific couplings [28–45]. This motivates us to look for higher

dimensional asymptotically Lifshitz black holes in pure higher derivative gravity system.

At a specific value of coupling, we indeed found an analytic asymptotically Lifshitz black

hole in four dimensions with the dynamical exponent being z = 3/2 and this solution

could be viewed as a generalization of the three dimensional case [26] to four dimensions.

However, we did not find any analytic Lifshitz black hole solutions for the higher derivative

gravity in five dimensions.

The black hole solution we found has very unusual thermodynamic properties. Using

the Wald entropy formula, we find that it has a zero entropy while with a nonzero tem-

perature which depends on the mass parameter in the solution. This is very analogous

to the circumstance of the BTZ black hole in NMG at a specific coupling [29]. Though

this does not necessarily mean that the dual field theory is trivial, it is still mysterious

in the framework of pure gravity theory that a black hole has zero entropy while with

non-zero temperature.

In the next section, we give the analytic Lifshitz black hole solution and the specific

higher derivative gravity theory. In section 3, we discuss the thermodynamic properties of

this black hole and compare it with the BTZ black hole in NMG at a specific coupling. In

the last section, we give our conclusion and discussions.

2 The Lifshitz black hole solution

Motivated by [26] where an analytic asymptotically Lifshitz black hole solution was found

in NMG [27], which is a higher derivative gravity system in three dimensions, we add higher

derivative terms to the four dimensional Einstein gravity theory and consider the following

action

S =
1

16πG

∫

d4x
√
−g(R − 2λ + αR2 + βRµνRµν), (2.1)

where α, β are coupling constants, G is the four dimensional Newton constant and λ is

the cosmological constant. As we know in four dimensions the Gauss-Bonnet term is a

topological invariant and does not affect the equation of motion, so this action (2.1) is the

most general form for gravity theories with R2 high derivative terms in four dimensions.

The corresponding equation of motion for the action (2.1) is

Gµν + λgµν + Yµν = 0, (2.2)

where

Gµν = Rµν − 1

2
gµνR,

Yµν = (2α + β)(gµν∇2 −∇µ∇ν)R + β∇2Gµν

+ 2αR

(

Rµν − 1

4
gµνR

)

+ 2β(Rµρνσ − 1

4
gµνRρσ)Rρσ. (2.3)

In the next subsections we will present Lifshitz and Schrödinger vacuum solutions and

Lifshitz black hole solutions for this action.

– 2 –
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2.1 Vacuum solutions

We assume that the Lifshitz vacuum solution is of the form

ds2 = −r2z

ℓ2z
dt2 +

ℓ2

r2
dr2 +

r2

ℓ2
(dx2 + dy2), (2.4)

where z is the dynamical exponent. We substitute this assumption (2.4) into the equation

of motion (2.2) and find that the vacuum Lifshitz solution with the form (2.4) exists only

when the coupling constants and the cosmological constant satisfy the following relation

βℓ−2 =
1 − 4αℓ−2(z2 + 2z + 3)

2(2 + z2)
,

λℓ2 = −1

2
(z2 + 2z + 3). (2.5)

From the relation (2.5) we can easily see that to make sure that z is a real number, the

cosmological constant should satisfy the condition λℓ2 < −1. In addition, we can have the

ordinary AdS vacuum solution with z = 1 when 4αℓ−2 + βℓ−2 = 1/6 and λℓ2 = −3.

The isometry group of this vacuum solution is generated by [8, 17]

Mij = −i(xi∂j − xj∂i), Pi = −i∂i, H = −i∂t, D = −i(zt∂t + xi∂i + r∂r) (2.6)

which constitutes the Lifshitz symmetry algebra. The momentum Pi, Hamiltonian H

and angular momentum Mij enjoy the usual commutators, while the dilatation operator

has nonvanishing commutators with the other generators as [D,Pi] = iPi, [D,H] = izH,

[D,Mij ] = i(2− z)Mij . It’s natural to conjecture that the quantum gravity of (2.1) on the

background (2.4) is dual to a 2+1 dimensional non-relativistic quantum field theory which

has a Lifshitz scale invariance with dynamical exponent z.

Interestingly the action (2.1) also has a Schrödinger vacuum solution

ds2 = −r2z

ℓ2z
dt2 +

ℓ2

r2
dr2 +

r2

ℓ2
(−2dtdx + dy2), (2.7)

when

βℓ−2 =
24αℓ−2 − 1

2(2z2 − z − 4)
,

λℓ2 = −3. (2.8)

Some analytic Schrödinger black hole solutions are available in the literatures [9–11].

We will focus our attention on finding Lifshitz black hole solutions for the action (2.1) in

the next subsection.

2.2 The Lifshitz black hole solution

Following [26], we assume that the metric of the asymptotically Lifshitz black hole solution

has the following form

ds2 = −r2z

ℓ2z
F (r)dt2 +

ℓ2

r2
H(r)dr2 +

r2

ℓ2
(dx2 + dy2), (2.9)

– 3 –
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where F (r) and H(r) are functions depending on the radial coordinate r only. In order for

the black hole solution to be asymptotic to the Lifshitz vacuum solution (2.4), we demand

that these functions obey limr→∞ F (r) = limr→∞ H−1(r) = 1. To make it a black hole

solution, we demand that F (r) and H(r) vanish at a given radius r = rH where the horizon

is located.

The equation of motion turns out to be solved by

F (r) = H−1(r) = 1 − r3
H

r3
, z =

3

2
(2.10)

when the coupling constants and the cosmological constant take the following value

αℓ−2 = 1/33, βℓ−2 = 0, λℓ2 = −33/8. (2.11)

Here this solution is valid only at z = 3/2 and at other values of the dynamical exponent

z, we did not find any analytic solutions.

Then the static asymptotically Lifshitz black hole for z = 3/2 is given by

ds2 = −r3

ℓ3

(

1 − r3
H

r3

)

dt2 +
ℓ2

r2

dr2

1 − r3

H

r3

+
r2

ℓ2
(dx2 + dy2), (2.12)

and the corresponding gravity action is

S =
1

16πG

∫

d4x
√
−g(R − 2λ + αR2), (2.13)

where α = ℓ2/33 and λ = −33/8ℓ2.

It can be easily checked that the solution (2.12) has a curvature singularity at r = 0,

where some scalar combinations of the Riemann tensor diverge. The metric has a horizon

at r = rH , and the boundary is localized at r → ∞. From the geometrical point of view,

it is indeed a black hole solution. In addition, this black hole is asymptotically to the

Lifshitz vacuum solution (2.4) with z = 3/2. It is natural to conjecture that the quantum

gravity of (2.1) with the above special parameters on the background (2.12) is dual to a

2 + 1 dimensional thermal non-relativistic Lifshitz quantum field theory with dynamical

exponent z = 3/2. It is expected that this solution can also describe the quantum critical

region in condensed matter systems at nonzero temperature.

Before discussing the thermal properties of this black hole, let us first have a look at

the action (2.13) at the specific coupling we take here. At the specific coupling (2.11) the

trace of the equation of motion (2.2) gives

R = 4λ + 6α∇2R. (2.14)

This is always satisfied by constant curvature metrics with R = 4λ. Then by substituting

R = 4λ back to the equation of motion (2.2) we find that the equation of motion vanishes,

which means that all constant curvature solutions with R = 4λ are solutions of the equation

of motion (2.2) at the specific coupling (2.11). It is easy to check that the black hole solution

we found is just a constant curvature solution of this kind.

– 4 –
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2.3 Unusual thermal properties

Now let us focus on the thermal properties of the Lifshitz black hole (2.12). The Hawking

temperature of the black hole is easy to find

T =
3

4πrH

(rH

ℓ

)5/2

. (2.15)

By Wald’s formula for the black hole entropy [46],

S = −2π

∫

H

∂L
∂Rabcd

ǫabǫcd, (2.16)

where L is the Lagrangian of a gravity theory, we find that the Lifshitz black hole solu-

tion (2.12) has a vanishing entropy in the action (2.13). The vanishing entropy is closely

related to the fact that our solution satisfies the relation: 1 + 2αR = 0.

Indeed, all constant curvature solutions with R = 4λ are solutions to the action (2.13)

and our solution is a constant curvature solution with R = −1/2α = 4λ. Furthermore, we

find that the action (2.13) is always vanishing for our solution, even when a boundary term

is added

Sbt = − 1

8π

∫

∂M
d3x

√
−h(1 + 2αR)K, (2.17)

where K is the extrinsic curvature for the boundary hypersurface ∂M with induced metric

h. This implies that both the free energy and mass of the black hole vanish as well

F = M = 0, (2.18)

although the black hole has a nonvanishing horizon radius rH .

Such thermodynamic behavior looks very strange. However, we find that similar

strange thermodynamic behavior also occurs for the three dimensional Lifshitz black hole

found in [26]. The action of NMG in three dimensions is

I =
1

16πG

∫

d3x
√
−g

[

R − 2λ0 −
1

m2
K

]

, (2.19)

where

K = RµνRµν − 3

8
R2, (2.20)

m is the mass parameter of this massive gravity and λ0 is a constant which is different

from the cosmological constant. The black hole solution present in [26] is

ds2 = −r2z

ℓ2z
F (r)dt2 +

ℓ2

r2
H(r)dr2 +

r2

ℓ2
dx2, (2.21)

where

F (r) = H−1(r) = 1 − r2
H

r2
, (2.22)

z = 3, m2 = −1/(2ℓ2), λ0 = −13/(2ℓ2) and rH is an integration constant. The black hole

has a Hawking temperature

T =
1

2πℓ

(rH

ℓ

)3

,

– 5 –
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but a negative entropy

S = −A

G
,

by the Wald’s formula, where A = rHL/ℓ and L is the length of the coordinate x. By using

the first law of black hole thermodynamics, dM = TdS, we find that the mass of the black

hole (2.21) is negative

M = − L

8πGℓ

(rH

ℓ

)4

, (2.23)

if taking the solution (2.21) with rH = 0 as a vacuum solution being of vanishing mass.

Here we should note that if we take the three dimensional Newton constant G to be

negative as in Topological massive gravity and NMG in asymptotically Minkowski space-

time, the entropy and the mass can be both positive. However, in usual gravity calculations

concerned with black holes, we always take G to be positive, so the thermal behavior of

this three dimensional black hole is quite unusual compared with ordinary black holes.

2.4 Remarks on the unusual thermodynamic behavior

It seems quite unphysical that a black hole solution possesses a zero entropy with arbitrary

nonzero temperature, which is a property of thermal Minkowski vacuum or thermal AdS

spacetime, or at least this may indicate that the corresponding field theory is trivial in

some sense. However, in fact, such properties for black hole have also been found before in

NMG for BTZ black holes, which does not necessarily mean that the corresponding field

theory is trivial [28–30]. Let us have a look at what happened there.

The action (2.19) is the one for NMG in three dimensions and the BTZ black hole is

a solution to this action. The central charges of NMG in the background of AdS3 are [29]

cL = cR =
3ℓ

2G

(

1 − 1

2m2ℓ2

)

. (2.24)

The entropy of the BTZ black hole is proportional to the central charges and also has a

factor 1 − 1/2m2ℓ2. Thus at a specific coupling m2ℓ2 = 1/2, the entropy of the BTZ black

hole vanishes while the temperature of the black hole is nonzero. This is very analogous

to the condition we encounter here. In the case of NMG, it is shown that at the specific

coupling m2ℓ2 = 1/2 under Brown-Henneaux boundary conditions, the dual field theory

is trivial. However, at this specific coupling under a relaxed log boundary condition, it

is shown that the dual field theory is a log conformal field theory which is not trivial

though the BTZ black hole has a zero entropy. On the gravity side this may indicate that

there are other gravity solutions besides the BTZ black hole which satisfy the boundary

conditions, such as pp wave solutions [35]. In the case of this asymptotically Lifshitz

black hole, it is expected that there may be other gravity solutions which asymptotes the

Lifshitz vacuum solution under certain boundary conditions and the whole system with

all asymptotically Lifshitz solutions can describe the dual condensed matter system at the

quantum critical region.

– 6 –
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3 Conclusion and discussion

In this paper we considered a higher derivative gravity system (2.1) in four dimensions with

a negative cosmological constant. We showed that vacuum solutions with both Lifshitz

type (2.4) and Schrödinger type (2.7) isometry with arbitrary dynamical exponent z exist

in this action. We also constructed an analytic black hole solution (2.12) which asymptotes

to the vacuum Lifshitz solution with z = 3/2 at a specific value of coupling. However, we

found that this black hole has an unusual thermodynamic behavior that it has zero entropy

but non-zero temperature.

This may seem unphysical or at least indicate that the dual field theory may be trivial.

However, we have an analogy of BTZ black holes in NMG in three dimensions, where at

a specific coupling, the entropy of the BTZ black hole vanishes while the temperature is

non-zero. In that case, the dual field theory can be trivial or nontrivial depending on the

boundary conditions though the entropy is always zero at that specific coupling. Thus

in this asymptotically Lifshitz case, we hope that there may also be a proper boundary

condition under which the dual non-relativistic field theory is not trivial and can describe

the condensed matter systems at the quantum critical region. Of course this still needs

further investigation to see whether there exist other asymptotically Lifshitz solutions or

whether the dual field theory is trivial.

Despite that the dual field theory may not be trivial, it is still mysterious in the

framework of a gravity theory that a black hole can have zero entropy while non-zero

temperature. Future work should be done to probe this black hole using various ways to

get more information of this black hole or to find the origin of this unusual behavior.

In addition, we found that the three dimensional Lifshitz black hole presented recently

in [26] has a positive Hawking temperature, but a negative entropy and a negative mass

when we take the Newton constant to be positive. From the point of view of black hole

thermodynamics, it is of great interest to further understand those unusual thermodynamic

properties of black holes.

Acknowledgments

This work was supported in part by a grant from the Chinese Academy of Sciences with

No. KJCX3-SYW-N2, grants from NSFC with No. 10821504 and No. 10525060.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[SPIRES].

[2] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics,

arXiv:0903.3246 [SPIRES].

[3] C.P. Herzog, Lectures on holographic superfluidity and superconductivity,

J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

– 7 –

http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711200
http://arxiv.org/abs/0903.3246
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.3246
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://arxiv.org/abs/0904.1975
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.1975


J
H
E
P
1
0
(
2
0
0
9
)
0
8
0

[4] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi

surfaces and AdS2, arXiv:0907.2694 [SPIRES].

[5] J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518

[SPIRES].

[6] D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the

Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

[7] K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs,

Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

[8] S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points,

Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

[9] C.P. Herzog, M. Rangamani and S.F. Ross, Heating up galilean holography,

JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].

[10] J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with

non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].

[11] A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms,

JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].

[12] U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime,

JHEP 03 (2009) 070 [arXiv:0812.5088] [SPIRES].

[13] R.B. Mann, Lifshitz topological black holes, JHEP 06 (2009) 075 [arXiv:0905.1136]

[SPIRES].

[14] G. Bertoldi, B.A. Burrington and A. Peet, Black holes in asymptotically Lifshitz spacetimes

with arbitrary critical exponent, arXiv:0905.3183 [SPIRES].

[15] E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Holographic superconductors

with Lifshitz scaling, arXiv:0908.2611 [SPIRES].

[16] K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, arXiv:0909.0263

[SPIRES].

[17] A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N effects in non-relativistic

gauge-gravity duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [SPIRES].

[18] M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].

[19] S.S. Pal, Anisotropic gravity solutions in AdS/CMT, arXiv:0901.0599 [SPIRES].

[20] T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points,

JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].

[21] S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories,

JHEP 09 (2009) 009 [arXiv:0907.1846] [SPIRES].

[22] G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in

asymptotically Lifshitz spacetimes, arXiv:0907.4755 [SPIRES].

[23] W. Li, T. Nishioka and T. Takayanagi, Some no-go theorems for string duals of

non-relativistic Lifshitz-like theories, JHEP 10 (2009) 015 [arXiv:0908.0363] [SPIRES].

[24] D.-W. Pang, R2 corrections to asymptotically Lifshitz spacetimes, JHEP 10 (2009) 031

[arXiv:0908.1272] [SPIRES].

[25] G. Compere, S. de Buyl, S. Detournay and K. Yoshida, Asymptotic symmetries of

Schrödinger spacetimes, arXiv:0908.1402 [SPIRES].

– 8 –

http://arxiv.org/abs/0907.2694
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.2694
http://arxiv.org/abs/0909.0518
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.0518
http://dx.doi.org/10.1103/PhysRevD.78.046003
http://arxiv.org/abs/0804.3972
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.3972
http://dx.doi.org/10.1103/PhysRevLett.101.061601
http://arxiv.org/abs/0804.4053
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.4053
http://dx.doi.org/10.1103/PhysRevD.78.106005
http://arxiv.org/abs/0808.1725
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1725
http://dx.doi.org/10.1088/1126-6708/2008/11/080
http://arxiv.org/abs/0807.1099
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.1099
http://dx.doi.org/10.1088/1126-6708/2008/10/072
http://arxiv.org/abs/0807.1100
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.1100
http://dx.doi.org/10.1088/1126-6708/2008/11/059
http://arxiv.org/abs/0807.1111
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.1111
http://dx.doi.org/10.1088/1126-6708/2009/03/070
http://arxiv.org/abs/0812.5088
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.5088
http://dx.doi.org/10.1088/1126-6708/2009/06/075
http://arxiv.org/abs/0905.1136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.1136
http://arxiv.org/abs/0905.3183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.3183
http://arxiv.org/abs/0908.2611
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.2611
http://arxiv.org/abs/0909.0263
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.0263
http://dx.doi.org/10.1088/1126-6708/2009/03/097
http://arxiv.org/abs/0812.0166
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0166
http://arxiv.org/abs/0812.0530
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0530
http://arxiv.org/abs/0901.0599
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.0599
http://dx.doi.org/10.1088/1126-6708/2009/06/084
http://arxiv.org/abs/0905.0688
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.0688
http://dx.doi.org/10.1088/1126-6708/2009/09/009
http://arxiv.org/abs/0907.1846
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.1846
http://arxiv.org/abs/0907.4755
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.4755
http://dx.doi.org/10.1088/1126-6708/2009/10/015
http://arxiv.org/abs/0908.0363
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.0363
http://dx.doi.org/10.1088/1126-6708/2009/10/031
http://arxiv.org/abs/0908.1272
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.1272
http://arxiv.org/abs/0908.1402
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.1402


J
H
E
P
1
0
(
2
0
0
9
)
0
8
0

[26] E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three

dimensions, arXiv:0909.1347 [SPIRES].

[27] E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity inl three dimensions,

Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [SPIRES].

[28] Y. Liu and Y.-w. Sun, Note on new massive gravity in AdS3, JHEP 04 (2009) 106

[arXiv:0903.0536] [SPIRES].

[29] Y. Liu and Y.-W. Sun, Consistent boundary conditions for new massive gravity in AdS3,

JHEP 05 (2009) 039 [arXiv:0903.2933] [SPIRES].

[30] E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity,

Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [SPIRES].

[31] G. Clement, Warped AdS3 black holes in new massive gravity,

Class. Quant. Grav. 26 (2009) 105015 [arXiv:0902.4634] [SPIRES].

[32] M. Nakasone and I. Oda, Massive gravity with mass term in three dimensions,

arXiv:0903.1459 [SPIRES].

[33] M. Nakasone and I. Oda, On unitarity of massive gravity in three dimensions,

Prog. Theor. Phys. 121 (2009) 1389 [arXiv:0902.3531] [SPIRES].

[34] Y. Liu and Y.-W. Sun, On the generalized massive gravity in AdS3,

Phys. Rev. D 79 (2009) 126001 [arXiv:0904.0403] [SPIRES].

[35] E. Ayon-Beato, G. Giribet and M. Hassaine, Bending AdS waves with new massive gravity,

JHEP 05 (2009) 029 [arXiv:0904.0668] [SPIRES].

[36] I. Oda, Renormalizability of massive gravity in three dimensions, JHEP 05 (2009) 064

[arXiv:0904.2833] [SPIRES].

[37] S. Deser, Ghost-free, finite, fourth order D = 3 (alas) gravity,

Phys. Rev. Lett. 103 (2009) 101302 [arXiv:0904.4473] [SPIRES].

[38] W. Kim and E.J. Son, Central charges in 2D reduced cosmological massive gravity,

Phys. Lett. B 678 (2009) 107 [arXiv:0904.4538] [SPIRES].

[39] G. Clement, Black holes with a null Killing vector in new massive gravity in three

dimensions, arXiv:0905.0553 [SPIRES].

[40] I. Oda, Renormalizability of topologically massive gravity, arXiv:0905.1536 [SPIRES].

[41] J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons,

kinks and wormholes for BHT masive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545]

[SPIRES].

[42] I. Gullu and B. Tekin, Massive higher derivative gravity in D-dimensional Anti-de Sitter

spacetimes, Phys. Rev. D 80 (2009) 064033 [arXiv:0906.0102] [SPIRES].

[43] M. Chakhad, Kundt spacetimes of massive gravity in three dimensions, arXiv:0907.1973

[SPIRES].

[44] R. Andringa et al., Massive 3D supergravity, arXiv:0907.4658 [SPIRES].

[45] G. Giribet, J. Oliva, D. Tempo and R. Troncoso, Microscopic entropy of the

three-dimensional rotating black hole of BHT massive gravity, arXiv:0909.2564 [SPIRES].

[46] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

– 9 –

http://arxiv.org/abs/0909.1347
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.1347
http://dx.doi.org/10.1103/PhysRevLett.102.201301
http://arxiv.org/abs/0901.1766
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.1766
http://dx.doi.org/10.1088/1126-6708/2009/04/106
http://arxiv.org/abs/0903.0536
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.0536
http://dx.doi.org/10.1088/1126-6708/2009/05/039
http://arxiv.org/abs/0903.2933
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2933
http://dx.doi.org/10.1103/PhysRevD.79.124042
http://arxiv.org/abs/0905.1259
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.1259
http://dx.doi.org/10.1088/0264-9381/26/10/105015
http://arxiv.org/abs/0902.4634
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.4634
http://arxiv.org/abs/0903.1459
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.1459
http://dx.doi.org/10.1143/PTP.121.1389
http://arxiv.org/abs/0902.3531
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3531
http://dx.doi.org/10.1103/PhysRevD.79.126001
http://arxiv.org/abs/0904.0403
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.0403
http://dx.doi.org/10.1088/1126-6708/2009/05/029
http://arxiv.org/abs/0904.0668
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.0668
http://dx.doi.org/10.1088/1126-6708/2009/05/064
http://arxiv.org/abs/0904.2833
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.2833
http://dx.doi.org/10.1103/PhysRevLett.103.101302
http://arxiv.org/abs/0904.4473
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.4473
http://dx.doi.org/10.1016/j.physletb.2009.06.005
http://arxiv.org/abs/0904.4538
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.4538
http://arxiv.org/abs/0905.0553
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.0553
http://arxiv.org/abs/0905.1536
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.1536
http://dx.doi.org/10.1088/1126-6708/2009/07/011
http://arxiv.org/abs/0905.1545
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.1545
http://dx.doi.org/10.1103/PhysRevD.80.064033
http://arxiv.org/abs/0906.0102
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.0102
http://arxiv.org/abs/0907.1973
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.1973
http://arxiv.org/abs/0907.4658
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.4658
http://arxiv.org/abs/0909.2564
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.2564
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9403028

	Introduction
	The Lifshitz black hole solution
	Vacuum solutions
	The Lifshitz black hole solution
	Unusual thermal properties
	Remarks on the unusual thermodynamic behavior

	Conclusion and discussion

